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Abstract In recent years, statisticians trained in data science methods have been
joining National Statistical Offices (NSOs), aiming to harness non-traditional data
sources and machine learning methods to enhance the production of official statistics.
Despite their expertise, these professionals encounter significant barriers, including
limited computational resources, inflexible development environments that do not
foster collaborative work, and limited tools to transition from innovative experiments
to production-grade solutions. This paper presents Onyxia, an open-source project
developed to address these challenges by enabling organizations to build modern
and flexible data science environments that enhance the autonomy of statisticians.
With Onyxia and its showcase instance, the SSP Cloud, we demonstrate how cloud
technologies can be made readily accessible, fostering innovation, collaboration
and reproducibility in the field of official statistics. Through a case study of the
classification of the activity domain (NACE) of French companies, we illustrate
how these tools have been instrumental in operationalizing machine learning models
in accordance with MLOps principles, marking a significant step forward in the
valorisation of data science projects at Insee.

1 Introduction

In recent years, the European Statistical System (ESS) has committed to leverage
non-traditional data sources in order to improve the process of statistical production,
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an evolution that is encapsulated by the concept of Trusted Smart Statistics [35].
This dynamic is accompanied by innovations in the statistical processes, so as to
be able to take advantage of the great potential of these sources (greater timeliness,
increased spatio-temporal resolution, etc.), but also to cope with their complexity
or imperfections. At the forefront of these innovations are machine-learning meth-
ods and their promising uses in the coding and classification fields, data editing
and imputation [17]. The multiple challenges faced by statistical offices because of
this evolution are addressed in the Bucharest Memorandum on Official Statistics
in a Datafied Society (Trusted Smart Statistics), which predicts that "the variety
of new data sources, computational paradigms and tools will require amendments
to the statistical business architecture, processes, production models, IT infrastruc-
tures, methodological and quality frameworks, and the corresponding governance
structures", and consequently invites the ESS to assess the required adaptations and
prioritize them [10].

In line with these recommendations, much work has been done in the context of
successive projects at the European level in order to operationalize the use of non-
traditional data sources in the production of official statistics. Within the scope of the
ESSnet Big Data II project (2018-2020), National Statistical Offices (NSOs) have
been working across a wide range of themes (online job vacancies, smart energy,
tracking ships, etc.) in order to put together the building blocks for using these
sources in actual production processes and identify their limitations [13]. However,
while a substantial amount of work has been devoted to developing methodological
frameworks [9, 37], quality guidelines [20] as well as devising business architectures
that make third-party data acquisition more secure [34], not much has been said about
the IT infrastructures and skills needed to properly deal with these new objects.

The characteristics of big data sources make them particularly complex to process,
be it their volume, their velocity (speed of creation or renewal) or their variety
(structured but also unstructured data, such as text and images). Besides, the "skills
and competencies to automate, analyse, and optimize such complex systems are
often not part of the traditional skill set of most National Statistical Offices" [3]. Not
incidentally, an increasing number of public statisticians trained as data scientists
have joined NSOs in recent years. Within its multiple meanings, the term “data
scientist” reflects the increased involvement of statisticians in the IT development
and orchestration of their data processing operations, beyond merely the design or
validation phases [7]. However, based on our observations at Insee and other French
statistical offices, the ability of these new data professionals to derive value from big
data sources and machine learning methods is limited by several challenges.

A first challenge is related to the lack of proper IT infrastructures to tackle the
new data sources that NSOs now have access to as well as the accompanying need for
new statistical methods. For instance, big data sources require huge storage capacities
and often rely on distributed computing frameworks to be processed [25]. Similarly,
the adoption of new statistical methods based on machine learning algorithms often
requires IT capacities — in particular, GPUs (graphical processing units) — to
massively parallelize computations [36]. Such resources are not readily available
in traditional IT infrastructures. Furthermore, these new infrastructures generally



A cloud-native data science platform to build production-grade ML systems 3

require specific skills — especially to build and maintain them — that are not easily
found in NSOs.

Another major challenge lies in equipping statisticians with development envi-
ronments that enable them to experiment more freely. The essence of innovation in
statistical work lies in the ability to swiftly adapt to and incorporate new tools and
methodologies. This agility is hampered when statisticians depend excessively on IT
departments to provision resources or install new software packages. In traditional
setups — personal computers or virtual desktops on centralized architectures — IT
departments generally prioritize security and system stability over the provision of
new services, which limits the innovation potential. Besides, these rigid environ-
ments make it harder to implement development best practices, such as collaborative
work — which requires environments where experiments can be easily shared with
peers — and reproducibility.

A third challenge is related to the difficulty of transitioning from innovative
experiments to production-grade solutions. Even when statisticians have access to
development environments in which they can readily experiment, the step towards
deploying an application or a model is generally very large. Production environments
often differ from development environments in such a way that the additional devel-
opment costs needed to go from a proof of concept to an industrialized solution that
actually serves users can limit the feasibility of this transition. Furthermore, in the
case of machine learning projects, models that have been deployed require a proper
monitoring to ensure that they maintain their accuracy and utility over time, and
generally require periodic or continuous improvements. Again, this pleads for more
flexible environments that enable statisticians to manage the complete lifecycle of
their data science projects in a more continuous way.

We argue that these various challenges have an underlying common theme: the
need for more autonomy. The ability of data science methods to improve and poten-
tially transform the production of official statistics crucially depends on the ability
of statisticians to carry out innovative experiments more freely. To do so, they need
to have access to substantial and diverse computing resources that enable them to
tackle the volume and diversity of big data sources and leverage machine learning
methods. Such experimental projects require, in turn, flexible development environ-
ments that foster collaborative work in order to capitalize the diversity of profiles and
skills that compose project teams. Finally, to derive value from these experiments,
statisticians require tools to deploy applications as proof-of-concepts and orchestrate
their statistical operations autonomously.

Against this background, Insee developed Onyxia: an open source project that
enables organizations to deploy data science platforms that foster innovation by
giving statisticians more autonomy1. This paper aims at describing the full thought
process that led to this project and at exemplifying how it empowers statisticians at
Insee, thus becoming a cornerstone of our innovation strategy. Section 2 provides an
in-depth analysis of the data ecosystem’s latest developments, casting light on the
technological choices that have shaped the development of a modern data science

1 https://github.com/InseeFrLab/onyxia
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environment tailored to the specific needs of statisticians. In particular, we show
how cloud-native technologies — particularly containers and object storage — are
key to building scalable and flexible environments that can enhance autonomy while
promoting reproducibility in the production of official statistics. However, despite
their appealing attributes for modern data science applications, the complexity of
configuring and utilizing cloud technologies often poses barriers to their broad
adoption. In section 3, we detail the core of the Onyxia project: how we made
cloud technologies accessible to statisticians through a user-friendly interface and an
extensive catalogue of ready-to-use data science environments, while circumventing
potential vendor lock-in effects for both the institution and their users. We also
show how providing an open-innovation instance of Onyxia, the SSP Cloud, greatly
facilitated the adoption of these technologies and fostered improved development
practices. Finally, through the case study of the classification of French companies’
activity (NACE), section 4 illustrates how leveraging these technologies greatly
facilitated the deployment of machine learning models at Insee in alignment with
the industry best practices — namely, MLOps principles.

2 Principles for building a modern and flexible data architecture
for official statistics

With the emergence of big data sources and new methodologies offering significant
promise to improve the production process of official statistics, statisticians trained
in data science techniques are eager to innovate. However, their ability to do so is
limited by several challenges. Central among these challenges is the need for greater
autonomy — be it in scaling resources to match statistical workloads, deploying
proofs of concept with agility and in a collaborative manner, etc. Against this back-
ground, our aim was to design a data science platform that not only manages big data
efficiently but also empowers statisticians by enhancing their autonomy. To achieve
this, we looked at the evolution of the data ecosystem to identify significant trends
that could help overcome the above-mentioned limitations2. Our findings indicate
that leveraging cloud-native technologies, particularly containers and object storage,
is key to building infrastructures capable of handling large and varied datasets in
a flexible and cost-effective manner. Furthermore, these technologies significantly
enhance autonomy, facilitating innovation and promoting reproducibility in the pro-
duction of official statistics.

2 As a preamble to this review, we should note that, although we did our best to ground our insights
in the academic literature, a lot of it stems from informal knowledge gathered through diligent and
ongoing technology watch. In the rapidly evolving data ecosystem, traditional research papers are
increasingly giving way to blog posts as the primary references for cutting-edge developments.
This shift is largely due to the swift pace at which big data technologies and methodologies are
advancing, making the lengthy publication process of formal research often not the preferred way
of disseminating timely insights and innovations.
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2.1 Limitations of traditional big data architectures

Over the last decade, the landscape of big data has dramatically transformed. Fol-
lowing the publication of Google’s seminal papers that introduced the MapReduce
paradigm [16, 8], Hadoop-based systems rapidly became the reference architecture
of the big data ecosystem, celebrated for their capability to manage extensive datasets
through the use of distributed computing. The introduction of Hadoop marked a revo-
lutionary step, enabling organizations to process and analyse data at an unprecedented
scale. Basically, Hadoop provided companies with all-rounded capabilities for big
data analytics: tools for ingestion, data storage (HDFS), and computing capacities
(Spark, among others) [11], thus explaining its rapid adoption across industries.

In the late 2010s, Hadoop-based architectures have experienced a clear decline
in popularity. In traditional Hadoop environments, storage and compute were co-
localized by design: if the source data is distributed across multiple servers (hori-
zontal scaling), each section of the data is directly processed on the machine hosting
that section, so as to avoid network transitions between servers. In this paradigm,
scaling the architecture often meant a linear increase in both compute and storage,
regardless of the actual demand. In a recent article provocatively titled "Big Data
is Dead"3, Jordan Tigani, one of the founding engineers behind Google BigQuery,
explains why this model does not fit the reality of most data-centric organizations
anymore. First, because "in practice data sizes increase much faster than compute
sizes". While the amount of data generated and thus needing to be stored may grow
linearly over time, it is generally the case that we only need to query the most recent
portions of it, or only some columns and/or groups of rows. Besides, Tigani points
out that "the big data frontier keeps receding": advancements in server computing
capabilities and declining hardware costs mean that the number of workloads that
do not fit on a single machine — a simple yet effective definition of big data — has
been continually decreasing. As a result, by properly separating storage and compute
functions, even substantial data processing jobs may end up using "far less compute
than anticipated [...] and might not even need to use distributed processing at all".

These insights strongly align with our own observations at Insee in recent years.
For instance, an Insee team set up a Hadoop cluster as an alternative architecture
to the one already in use to process sales receipt data in the context of computing
the consumer price index. An acceleration of data processing operations by up to a
factor of 10 was achieved, for operations that previously took several hours to per-
form [21]. Despite this increase in performance, this type of architectures were not
reused later for other projects, mainly because the architecture proved to be expensive
and complex to maintain, necessitating specialized technical expertise rarely found
within NSOs [40]. Although these new projects could still involve substantial data
volumes, we observed that effective processing could be achieved using conventional
software tools (R, Python) on single-node systems by leveraging recent important
innovations from the data ecosystem. First, by using efficient formats to store the
data such as Apache Parquet [14], which properties — columnar storage [1] (see

3 https://motherduck.com/blog/big-data-is-dead/
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figure1), optimization for "write once, read many" analytics, ability to partition data,
etc. — make it particularly suited to analytical tasks such as those generally per-
formed in official statistics [2]. Second, by performing computations using optimized
in-memory computation frameworks such as Apache Arrow [15] or DuckDB [33].
Also based on columnar representation — thus working in synergy with Parquet files
— both of these frameworks greatly improve data queries performance through the
use of "lazy evaluation": instead of doing lots of separate operations (e.g. selecting
columns and/or filtering rows, then computing new columns, then performing ag-
gregations, etc.), they process them all at once in a more optimized way. As a result,
computations are limited to the data effectively needed by the queries, enabling much
larger-than-memory data processing on usual single-node machines.

Fig. 1 Row-oriented and column-oriented representation of a same dataset.

Note: Many statistical operations are analytical (OLAP) in nature: they involve selecting specific
columns, computing new variables, performing group-based aggregations, etc. Row-oriented stor-
age is not well-suited to analytical operations as it requires the full dataset to be read in memory to
query it. Conversely, column-based storage allows only relevant data columns to be queried, signif-
icantly reducing read and processing times for analytical workloads. In practice, popular columnar
formats such as Parquet use a hybrid-representation: they are primarily column-oriented but also
implement clever row-based grouping to optimize filtering queries.

2.2 Embracing cloud-native technologies

In light of this evolution of the big data ecosystem, there has been a notable shift
in recent years within the industry towards more flexible and loosely coupled ar-
chitectures. The advent of cloud technologies has been instrumental in facilitating
this shift. Unlike the era where Hadoop was prominent, network latency has become
much less of a concern, making the traditional model of on-premise and co-located
storage and compute solutions less relevant. Regarding the nature of the data that
needs to be processed, we observe an evolution that some have described as moving
"from big data to flexible data". Modern data infrastructures are required not only to
process large volumes but also to be adaptable in multiple dimensions. They must
accommodate various data structures (ranging from structured, tabular formats to
unstructured formats like text and images), ensure data portability across multi-cloud
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and hybrid cloud environments, and support a diverse range of computational work-
loads (from parallel computations to deep learning models necessitating GPUs, as
well as the deployment and management of applications) [24]. In recent years, two
technologies have emerged in the data ecosystem as foundational technologies for
achieving such flexibility in cloud-based environments: containerization and object
storage.

In a cloud environment, the computer of the user becomes a simple access point
to perform computations on a central infrastructure. This enables both ubiquitous
access to and scalability of the services, as it is easier to scale a central infrastruc-
ture — usually horizontally, i.e. by adding more servers. However, such centralized
infrastructures have two well-identified limitations that need to be dealt with: the
competition between users in access to physical resources and the need to properly
isolate deployed applications. The choice of containerization is fundamental as it
tackles these two issues [4]. By creating “bubbles” specific to each service, con-
tainers guarantee application isolation while remaining lightweight, as they share
the support operating system with the host machine (see. graph 2). In order to
manage multiple containerized applications in a systematic way, containerized in-
frastructures generally rely on an orchestrator software — the most prominent one
being Kubernetes, an open-source project initially developed by Google to manage
its numerous containerized workloads in production [41]. Orchestrators automate
the process of deploying, scaling, and managing containerized applications, coor-
dinating their execution across various servers. Interestingly, this property makes it
possible to handle very large volumes of data in a distributed way: containers break
down big data processing operations into a multitude of small tasks, organized by the
orchestrator. This minimizes the required resources while providing more flexibility
than Hadoop-based architectures [42].

The other fundamental choice in a data architecture is the nature of data storage.
In the cloud ecosystem, so-called "object storage" has become the de facto reference
[38]4. In this paradigm, files are stored as "objects" consisting of data, an identifier
and metadata. This type of storage is optimized for scalability, as objects are not
limited in size and the underlying technology enables cost-effective storage of (po-
tentially very) large files. It is also instrumental in building a decoupled infrastructure
such as discussed before: the data repositories — referred to as "buckets" — are di-
rectly searchable using standard HTTP requests through a standardized REST API.
In a world where network latency is not the main bottleneck anymore, this means
that storage and compute do not have to be on the same machines or even in the
same location, and can thus scale independently according to specific organization
demands. Finally, object storage is a natural complement to architectures based on
containerized environments for which it provides a persistence layer — containers
being stateless by design — and easy connectivity without compromising security,
or even with strengthened security compared with a traditional storage system [28].

4 Mainly because of Amazon’s "S3" (Simple Storage Service) implementation.
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Fig. 2 Architecture of a containerized environment.

Note: A container is a logical grouping of resources that makes it possible to encapsulate an
application (e.g. Python code), the packages used (e.g. Pandas, NumPy) and system libraries
(the Python interpreter, other OS-dependent libraries, etc.), in a single package. Containerized
applications are isolated from one another through virtualization, which makes it possible to
attribute specific physical resources to each application while guaranteeing complete independence
between them. But contrary to virtual machines which also virtualize the operating system (OS),
containers rely on a lightweight form of virtualization: the container shares the OS of the host
infrastructure through the container runtime (e.g. Docker). As a result, containers are much more
portable and can be readily deployed and redistributed.

2.3 Leveraging cloud technologies to increase autonomy and foster
reproducibility

Understanding how the technological choices described in the technical discussion
above are relevant in the context of official statistics require an in-depth review of
statisticians’ professional practices in their use of computing environments. At the
end of the 2000s, with microcomputing at its peak, many of the technical resources
used by statisticians at Insee were local: the code and processing software were lo-
cated on personal computers, while data was accessed through a file-sharing system.
Because of the limited scalability of personal computers, this setup greatly limited
the ability of statisticians to experiment with big data sources or computationally
intensive statistical methods, and involved security risks because of the widespread
data dissemination within the organization. In order to overcome these limitations, a
transition was made towards centralized IT infrastructures, concentrating all — and
thus overall much more — resources on central servers. Such infrastructures, made
available to statisticians through a shared, virtual desktop environment for ease of
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use, remains the dominant method for conducting statistical computations at Insee
at the time of writing these lines.

Through our observations and discussions with fellow statisticians, it became
obvious that although the current IT infrastructure adequately supported the core
activities of statistical production, it noticeably restricted statisticians’ capacity to
experiment freely and innovate. The primary bottleneck in this organization is the
dependency of statistical projects on centralized IT decision-making, such as the
allocation of computing resources, access to shared data storage, the use of pre-
configured programming languages and packaging environments, etc. Besides, such
dependencies often lead to a well-known phenomenon within the software develop-
ment community, where the priorities of developers — iterate rapidly to improve
functionality in a continuous manner — often clash with IT’s focus on security and
process stability. On the contrary, it is our understanding that modern data science
practices reflect an increased involvement of statisticians in the IT development and
orchestration of their data processing operations, beyond merely the design or vali-
dation phases. New data science infrastructures must take this expanded role of their
users into account, giving them more autonomy than conventional infrastructures.

We argue that cloud technologies stand out as a powerful solution to give statis-
ticians much more autonomy in their daily work, enabling a culture of innovation.
Through object storage, users gain control over the storage layer, allowing them to
experiment with diverse datasets without being constrained by the limited storage
spaces typically allocated by IT departments. Containerization empowers users to
customize their working environments to their specific needs — be it programming
languages, system libraries, or package versions — while also providing the flex-
ibility to scale their applications according to the required computing power and
storage capacities. By design, containers also foster the development of portable ap-
plications, which enables smoother transitions between environments (development,
testing, staging, production), ensuring that applications can be moved seamlessly
without the hurdles of environmental inconsistencies. Finally, with orchestration
tools like Kubernetes, statisticians can more readily deploy applications and APIs
and automatize the whole building process. This capability aligns with the DevOps
approach, which advocates building proofs of concept in an iterative manner, rather
than building the optimal (but time-consuming) solution for a pre-defined objective
[22].

Besides scalability and autonomy, these architectural choices also foster repro-
ducibility of statistical computations. The concept of reproducibility — namely the
ability to reproduce the result of an experiment by applying the same methodology to
the same data — is a fundamental criterion of scientific validity [27]. It is also highly
relevant in official statistics, as it serves as a foundation for transparency, which in
turn is crucial for building and maintaining the public’s trust [12]. Fostering repro-
ducibility in statistical production involves devising processing solutions that can
produce reproducible statistics on the one hand, and that can be shared with peers
on the other hand [26]. Traditional IT infrastructures — either a personal computer
or a shared infrastructure with remote desktop access — fall short in this regard, as
building a project or just computing a statistical indicator there generally involves



10 Romain Avouac and Thomas Faria and Frédéric Comte

Fig. 3 Containers foster reproducibility and portability by design.

Note: In a containerized environment, applications are created through script specifications —
a paradigm known as "infrastructure as code". In a text file conventionally named "Dockerfile",
data scientists can specify the working environment of their application: the application code, the
software to be included (e.g. R), the packages used for their processing operations (e.g. the R
package for geospatial computation sf ), and the OS-dependent system libraries that are called by
these packages (e.g. GDAL, the translator library for raster geospatial data formats used by most
packages dealing with geospatial data). Importantly, the versions of the software and packages that
were used to develop the application can be precisely specified, which guarantees reproducibility
of the computations performed. A build step then creates an image associated to the Dockerfile, i.e.
a packaged and compressed form of the working environment of the application. Images created
this way are portable: they can be readily distributed — usually through a container registry — and
executed in a reproducible manner on any infrastructure that has a container runtime.

a series of manual steps (installing system libraries, the programming language bi-
nary, projects packages, dealing with potentially conflicting versions, etc.) that can
not be fully reproduced across projects. In comparison, containers are reproducible
by design, as their build process involves defining precisely all the needed resources
as a set of processing operations in a standardized manner, from the "bare machine"
to the running application [30]. Furthermore, these reproducible environments can
be easily shared to peers as they can be readily published on open registries (for
example, a container registry such as DockerHub) along with the source code of
the application (for example, on a public software forge like GitHub or GitLab).
This approach significantly enhances the re-usability of code projects, fostering a
community-driven model of development and innovation.

3 Onyxia: an open source project to build cloud-native data
science platforms

This section explores how Onyxia, an open-source project initiated at Insee, de-
mocratizes access to cloud technologies for statisticians by providing modern data
science environments that foster autonomy. We discuss how this initiative fits in
with the general aim of creating "knowledge commons" by promoting and building
software that can be easily reused in the field of official statistics and beyond.
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3.1 Making cloud-technologies accessible to statisticians

Our technology watch and literature review highlighted cloud-native technologies,
in particular containerization and object storage, as instrumental in building a data
science platform that is both scalable and flexible. Building on these insights, we
established our initial on-premise Kubernetes cluster in 2020, integrating it with
MinIO, an open-source object storage system designed to work seamlessly with Ku-
bernetes. Yet, our first experiments highlighted a significant barrier to the widespread
adoption of cloud-native technologies: the complexity of their integration. This is an
important consideration when building data architectures that prioritize modularity
— an essential feature for the flexibility we aim to achieve5. However, modularity
of the architecture components also entails that any data application launched on
the cluster must be configured so as to communicate with all the components. For
instance, in a big data setup, configuring Spark to operate on Kubernetes while
interacting with datasets stored in MinIO requires an intricate set of configurations
(specifying endpoints, access tokens, etc.), a skill set that typically lies beyond the
expertise of statisticians.

For instance, due to MinIO’s compatibility with the Amazon S3 API, the storage
source could easily be switched to one managed by another public cloud provider,
without requiring substantial modifications.

This insight is really the base of the Onyxia project: choosing technologies that
foster autonomy will not actually foster autonomy if their complexity acts as a barrier
from widespread adoption in the organization. In recent years, statisticians at Insee
already needed to adapt to a changing environment in terms of their everyday tools:
transitioning from proprietary software (SAS®) to open-source ones (R, Python),
acculturating to technologies that improve reproducibility (version control with Git),
consuming and developing APIs, etc. These changes, making their job more and more
akin to the one of software developers, already imply significant training and changes
in daily work practices. Against this background, adoption of cloud-technologies was
utterly dependent on making them readily accessible.

To bridge this gap, we developed Onyxia, an application that essentially acts as
interface between the modular components that compose the architecture (see fig 4).
The main entry point of the user is a user-friendly web application6 that enables
users to launch services from a data science catalog (see section 3.3) as running
containers on the underlying Kubernetes cluster. The interface between the UI and
Kubernetes is done by a lightweight custom API7, that essentially transforms the
application request of the user into a set of manifests to deploy Kubernetes resources.

5 A telling example of the importance of building a modular architecture is the ability to switch
between storage sources (on-premise, public cloud provider, etc.). The storage solution we chose,
MinIO, is compatible with Amazon’s S3 API, which has become a de facto standard in the cloud
ecosystem due to the success of Amazon’s AWS S3 storage solution. As a result, organizations that
choose to use Onyxia are not tied to a specific storage solution: they can choose any solution that
complies with the standards defined by the S3 API.
6 https://github.com/InseeFrLab/onyxia-ui
7 https://github.com/InseeFrLab/onyxia-api
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Fig. 4 Onyxia is the technical binder between cloud-native modular components

For a given application, these resources are packaged under the form of Helm charts,
a popular way of packaging potentially complex applications on Kubernetes [18].
Although users can configure a service to tailor it to their needs, they will most of the
time just launch an out-of-the-box service with default settings and start developing
straight away. This point really illustrates the added value of Onyxia in facilitating
the adoption of cloud technologies. By injecting authentication information and
configuration into the containers at the initialization, we ensure that users can launch
and manage data science services in which they can interact seamlessly with the
data from their bucket on MinIO, their sensitive information (tokens, passwords) in
a secret management tool such as Vault, etc. This automatic injection, coupled with
the pre-configuration of data science environments in Onyxia’s catalogs of images8
and associated helm-charts9, make it possible for users to execute potentially complex
workloads — such as running distributed computations with Spark on Kubernetes
using data stored in S3, or training deep-learning models using a GPU — without
getting bogged down by the technicalities of configuration.

8 https://github.com/InseeFrLab/images-datascience
9 https://github.com/InseeFrLab/helm-charts-interactive-services
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3.2 Architectural choices aimed at fostering autonomy

The Onyxia project is based on a few structuring principles, with a central theme:
fostering autonomy, both at the organizational and individual levels. First, at the
level of the organization by preventing vendor lock-in. In order to get a competitive
edge, many commercial cloud providers develop applications and protocols that
customers need to use to access cloud resources, but that are not interoperable, greatly
complexifying potential migrations to another cloud platform [32]. Recognizing
these challenges, there is a trend towards endorsing cloud-neutral strategies [31] in
order to reduce reliance on a single vendor’s specific solutions. In contrast, the use
of Onyxia is inherently not restrictive: when an organization chooses to use it, it
chooses the underlying technologies — containerization and object storage — but
not the solution. The platform can be deployed on any Kubernetes cluster, either
on-premise or in public clouds. Similarly, Onyxia was designed to be used with
MinIO because it is an open-source object-storage solution, but is also compatible
with objects storage solutions from various cloud providers (AWS, GCP).

Onyxia also fosters autonomy at the level of users. Proprietary softwares that
have been used intensively in official statistics — such as SAS or STATA — also
produce a vendor lock-in phenomenon. The costs of licensing are high and can evolve
quickly, and users are tied in certain ways of performing computations, preventing
progressive upskilling. On the contrary, Onyxia aspires to be removable; we want
to enhance users’ familiarity and comfort with the underlying cloud technologies
rather than act as a permanent fixture in their workflow. An illustrative example
of this philosophy is the platform’s approach to user actions: for tasks performed
through the UI, such as launching a service or managing data, we provide users
with the equivalent terminal commands, promoting a deeper understanding of what
actually happens on the infrastructure when triggering something. Furthermore, all
the services offered through Onyxia’s catalog are open-source.

Fig. 5 Launching a service through Onyxia’s UI.

Note: Services from Onyxia’s catalog can either be used vanilla or configured by the users to tailor
them to their specific needs. In order to limit the dependence of users on Onyxia, each action
performed by the user on the UI is accompanied by the actual command that is executed on the
Kubernetes cluster.
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Naturally, the way Onyxia makes statisticians more autonomous in their work de-
pends on their needs and familiarity with IT skills. Statisticians that just want to have
access to extensive computational resources to experiment with new data sources
or statistical methods will have access in a few clicks to easy-to-use, pre-configured
data science environments, so that they can directly start to experiment. However,
many users want to go deeper and build actual prototypes of production applications
for their projects: configuring initialization scripts to tailor the environments to their
needs, deploying an interactive app that delivers data visualization to users of their
choice, deploying other services than those available in our catalogs, etc. For these
advanced users to continue to push the boundaries of innovation, Onyxia gives them
access to the underlying Kubernetes cluster. This means that users can freely open a
terminal on an interactive service and interacts with the cluster - within the bound-
aries of their namespace - in order to apply custom resources and deploy custom
applications or services.

Besides autonomy and scalability, the architectural choices of Onyxia also foster
reproducibility of statistical computations. In the paradigm of containers, the user
must learn to deal with resources which are by nature ephemeral, since they only exist
at the time of their actual mobilization. This fosters the adoption of development best
practices, notably the separation of the code — put on an internal or open-source
forge such as GitLab or GitHub — the data — stored on a specific storage solution,
such as MinIO — and the computing environment. While this requires an entry cost
for users, it also helps them to conceive their projects as pipelines, i.e. a series of
sequential steps with well-defined inputs and outputs (akin to directed acyclic graph
(DAG)). The projects developed in that manner are usually more reproducible and
portable — they can work seamlessly on different computing environments — and
thus also more readily shareable with peers.

3.3 An extensive catalogue of services to cover the entire lifecycle of
data science projects

In developing the Onyxia platform, our intention was to provide statisticians with
a comprehensive environment designed to support end-to-end development of data
science projects. As depicted in Figure 6, the platform offers a vast array of services
that span the complete lifecycle of a data science project.

The primary usage of the platform is the deployment of interactive develop-
ment environments (IDE), such as RStudio, Jupyter, or VSCode. These IDEs come
equipped with the latest kernels of major open-source programming languages com-
monly employed by public statisticians (R, Python, Julia), as well as an extensive
collection of packages commonly used in data science for each language. In order to
ensure that services remain up-to-date and consistent between them, we maintain our
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Fig. 6 Onyxia’s catalog aims at covering the entire lifecycle of data science projects

own stack of underlying Docker images and rebuild it weekly. The stack of images
is fully open-source10 and can thus be reused outside Onyxia.

As discussed in previous sections, the persistence layer of these interactive envi-
ronments is mainly carried out by MinIO, Onyxia’s default object storage solution.
As it is based on a standardized REST API, files can be easily queried directly
from R or Python using high-level packages. This in itself is an important step of
ensuring reproducibility: the input files of a project are not mounted manually and
then specified via paths adherent to a specific infrastructure and filesystem. Rather,
files are specified as HTTP queries, making the overall structure of projects much
more extendable. In our experience, the object-storage paradigm covers very well the
needs of most statistical projects we accompany. However, additional database ser-
vices such as PostgreSQL and MongoDB are available for applications with specific
needs, such as those requiring online transaction processing (OLTP) capabilities or
document-oriented storage.

As Onyxia was developed to allow experimentation with big data sources and
machine learning methods, we also provide services optimized for scalability. For in-
stance, frameworks like Spark and Trino that enable to perform distributed computa-
tions within Kubernetes. These services come pre-configured to integrate seamlessly
with S3 storage, thus facilitating building integrated and efficient data pipelines.

Beyond mere experimentation, our goal is to empower statisticians to transition
from trial phases to production-grade projects. In lines with principles from the
DevOps approach, this involves facilitating the deployment of prototypes and their

10 https://github.com/InseeFrLab/images-datascience
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continuous improvement over time. To this end, we provide a set of open-source tools
aimed at automatizing and industrializing the process of deploying data-intensive
applications (ArgoCD, Argo-Workflows, MLflow). For projects leveraging machine-
learning models, statisticians can serve their models through APIs, deploy them
using the aforementioned tools, and manage their lifecycle using an API manager
(e.g. Gravitee). Section 4 will illustrate how these tools, particularly MLflow, have
been central in putting machine learning models in production at Insee, in accordance
with MLOps principles.

In section 3.2, we stressed that one of Onyxia’s fundamental design principle
was to avoid vendor lock-in. In line with this idea, organizations that implement
Onyxia are free to customize catalogs to suit their specific requirements, or even
opt to construct their own catalogs independent of Onyxia’s default offerings. This
flexibility ensures that organizations are not confined to a single solution or provider,
and can adapt the platform to their evolving needs.

3.4 Building commons: an open-source project and an open-innovation
platform

As a fully open-source initiative, the Onyxia project aims at building "knowledge
commons" by promoting and building software that can be easily reused in offi-
cial statistics and beyond [39]. This concerns, first of all, the components on which
Onyxia are based: both its constitutive technological bricks (Kubernetes, MinIO,
Vault) as well as all the services from the catalog are open-source. But more cru-
cially, all the code of the project is available openly on GitHub11. Alongside an
in-depth documentation12, this greatly facilitates the potential for other organiza-
tions to create instances of data science platforms built upon the Onyxia software
and tailor it to their respective needs (see figure 7). This enabled the project to attract
a growing community of contributors from official statistics (Statistics Norway),
NGOs (Mercator Ocean), research centres and even industry, thus transitioning pro-
gressively towards a more decentralized governance of the project. In the next years,
the involvement of NSIs from the European Statistical System is expected to increase
as Onyxia was chosen as the reference data science platform in the context of the
AIML4OS project, a "One-Stop-Shop" for Artificial Intelligence/Machine Learning
for Official Statistics in the European Statistical System13.

Another major way in which we try to build commons is by developing and main-
taining a showcase instance of the Onyxia project, the SSP Cloud [6]. This platform,
equipped with extensive and scalable computational resources14, is designed to be a
sandbox for experimenting with cloud technologies and new data science methods.

11 https://github.com/InseeFrLab/onyxia
12 https://docs.onyxia.sh/
13 More information on this project available at https://cros.ec.europa.eu/dashboard/aiml4os.
14 On the physical side, the SSP Cloud consists in a Kubernetes cluster of about 20 servers, for a
total capacity of 10 TB of RAM, 1100 CPUs, 34 GPUs and 150 TB of storage.
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Fig. 7 One project, multiple instances: the UI is adaptable to the graphic identity of the organization

The full catalog of services of Onyxia is available on the platform, enabling moti-
vated users to go beyond mere experimentation by producing "proof of concepts",
with full autonomy regarding the configuration and orchestration of their services.

Beyond its technical capabilities, the SSP Cloud is an endeavour at embodying
the principles of open-innovation [5]. Deployed on internet15, it is open not only to
Insee employees, but also more broadly to French governmental agencies, French
Universities and other European NSIs, and is dedicated to experimenting with data
science methods using open data. Thus, the projects carried out on this platform
showcase the growing abundance of datasets published openly by organizations.
The fundamentally collaborative nature of the SSP Cloud has proven especially
beneficial for organizing innovative events such as hackathons — both at the national
and international levels — and in the academic sphere. It has become an integral
resource for several universities and Grandes Ecoles in France, fostering the use of
cloud-native and reproducible environments, and preventing vendor lock-in effect
due to the over-reliance of educational organizations on proprietary cloud solutions.
As a result, the platform is now widely used in the French National Statistical System
and beyond, with about 800 unique users per month in 2024. These users form a
dynamic community thanks to a centralized discussion canal; they help improve
the user experience by reporting bugs, suggesting new features, and thus contribute
directly to the project.

4 Case-study: using MLOps to improve NACE classification

This chapter aims, through a concrete example, to illustrate how Insee managed to
deploy its first machine learning (ML) model into production. It provides an in-depth
description of the MLOps approach that this project strived to adhere to, focusing on

15 https://datalab.sspcloud.fr/
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the various technologies that were employed. In particular, we highlight how cloud
technologies were instrumental in building a solution iteratively and how Onyxia
greatly facilitated this process by providing flexible development environments as
well as tools to deploy and monitor models, promoting a continuous improvement
loop. The entire project is available in open source16 and remains under active
development.

4.1 Improving the NACE classification process using ML methods

4.1.1 Motivation

Coding tasks are common operations for NSOs and can sometimes be challenging
due to the size of statistical classifications. At Insee, a sophisticated coding tool
called Sicore was developed in the 1990s to perform various classification tasks
[29]. It consists in a coding engine containing numerous deterministic rules which
identify ground-truth labels. Each input label goes through these rules and when a
ground-truth label is recognized, the associated code is assigned. When the label is
not recognized, it must be manually classified by an Insee agent.

Two main reasons drove the experimentation of new coding methods.
Firstly, there was an internal change with the redesign of the French statistical

business register, which lists all companies in France and assigns them a unique
identifier used across public administrations. The main goals of this revamping were
to improve the daily management of the registry for Insee agents and to reduce waiting
times for companies. Additionally, at the national level, the government launched a
one-stop shop for business formalities, allowing more flexibility for business owners
in describing their main activities. Initial testing exercises revealed that Sicore was
no longer the suitable tool for performing NACE classification, as only 30% of the
input data were being automatically coded.

Three stakeholders were involved in this project: the business team responsible for
managing the French statistical business register, the IT team developing softwares
related to the register’s operation, and the innovation team responsible for imple-
menting the new coding tool. The latter team is the SSP Lab, which was created in
2018 with the objective of providing support to other teams on innovation topics to
streamline their various projects.

4.1.2 Classification task

The project we describe consists in a standard NLP classification problem. Starting
from a textual description of the activity, we want to predict the associated class in
the NACE Rev. 2 statistical classification. This classification has the particularity of

16 https://github.com/orgs/InseeFrLab/teams/codification-ape/repositories
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being hierarchical and contains 5 different levels17: section, division, group, class,
and subclass. In total, 732 subclasses are included in the classification, which is the
level at which we aim to perform the classification. Table 1 provides an example of
this hierarchical structure.

Level NACE Title Size
Section H Transportation and storage 21
Division 52 Warehousing and support activities for transportation 88
Group 522 Support activities for transportation 272
Class 5224 Cargo handling 615
Subclass 5224A Harbour handling 732

Table 1 NACE Nomenclature

With the establishment of the one-stop shop, business owners now describe
their activity description with a free-text field. As a result, the new labels are very
different from the harmonized labels that were previously received. Therefore, it was
decided to work with ML models, that are known to be effective on supervised text
classification tasks [23]. This represents a significant paradigm shift from Insee’s
perspective, as ML was not traditionally used in the actual production of official
statistics. Besides, the perspective of putting the new model in production was
considered from the outset, guiding numerous methodological and technical choices.
As such, several strategic choices had to be made from the outset, including the
methodology, the choice of a development environment consistent with the target
production environment, and the adoption of collaborative work methods.

4.1.3 Methodology

Text classification from the free-text field provided by business owners is a complex
task: the activity descriptions are relatively short and thus contain limited statistical
information, can contain spelling mistakes, and often require domain knowledge
to be properly classified. On such task, traditional text analysis methods such as
count vectorization or TF-IDF often fall short whereas neural-network-based em-
bedding methods tend to perform better [23]. However, such architectures often
impose greater computational demands, as they are much larger and might require
specific hardware such as GPUs to perform inference with acceptable latency. These
constraints led us away from the most powerful language models, such as Trans-
former models, and instead directed us towards the fastText model [19], a simpler
embedding-based classifier. The fastText model is extremely fast to train, even from
scratch, and inference does not require a GPU to achieve low latency time. Besides,
the model yielded excellent performance results in our use-case that, considering
the time and human resource constraints, were more than sufficient to enhance the

17 Actually, there are 5 different levels in France but only 4 at the European level.
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existing process. Finally, the model’s architecture is relatively simple, simplifying
communication and adoption within the various Insee teams.

The fastText model relies on a bag-of-words model to obtain embeddings and a
classification layer based on logistic regression. The bag-of-words approach involves
representing a text as the set of vector representations of each of its constituent
words. The specificity of the fastText model compared to other embeddings-based
approaches is that embeddings are not only computed on words but also on word
n-grams and character n-grams, providing more context and reducing biases due to
spelling mistakes. Then, the embedding of a sentence is computed as a function of
the individual token embeddings, typically the average. In the case of supervised
text classification, the embedding matrix and the classifier’s parameters are learned
simultaneously during training by gradient descent, minimizing the cross-entropy
loss function. Figure 8 represents the full pipeline of operations performed by fastText
on an example text input.

Fig. 8 Overview of the simplified process behind fastText classifications

4.2 A production-first approach with MLOps

From the very onset of this project, the target was to go beyond mere experimentation
and put the model in production. Besides, the goal with this pilot project was also
to build a template for future ML projects at Insee. We thus strove to enforce best
development practices from the very beginning of the project: following community
standards for code quality, using scripts-based development over notebooks, building
a modular package-like structure, etc. However, compared to traditional development
projects, machine learning projects have specific features that make it necessary to
apply a complementary set of best practices, gathered under the name of MLOps.
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4.2.1 From DevOps to MLOps

DevOps is a set of practices designed to foster collaboration between development
(Dev) and operations (Ops) teams. The fundamental idea is to integrate the full
lifecycle of a project in a single automated continuum. An important tool to achieve
this continuity is CI/CD pipelines. With continuous integration (CI), each commit of
new source code will trigger a pipeline of standardized operations, such as building
the application, testing it and making it available as a release. Then, continuous
deployment (CD) consists in tools to automate the deployment of the new code and
limit manual intervention, while ensuring proper monitoring to guarantee process
stability and security. This approach promotes a faster, continual release of necessary
feature changes or additions. Furthermore, by encouraging collaboration between
teams, DevOps also promotes a quicker cycle of innovation, allowing teams to
address issues as they arise and incorporate feedback effectively throughout the
project lifecycle.

The MLOps approach can be seen as an extension of DevOps, developed to
address the specific challenges related to managing the lifecycle of ML models. Fun-
damentally, both DevOps and MLOps aim at building software in a more automated
and robust manner. The main difference is that in MLOps, this software also has a
machine learning component. Consequently, the lifecycle of the project gets more
complex. The underlying ML model needs to be re-trained regularly, to avoid any
loss of performance over time. Data ingestion must also be included in the pipeline,
as new data may be used to improve performance. Figure 9 presents the steps of an
ML project using the continuous representation traditionally seen in DevOps. This
illustrates a fundamental principle of MLOps, the need for continuous improvement,
described in more details in section 4.2.2.

Fig. 9 The MLOps approach promotes a continuous management of ML projects lifecycle
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4.2.2 Principles of MLOps

MLOps is defined by a few core principles that are crucial for building production-
grade and scalable ML applications. These principles are designed to address the
specific challenges associated with ML workflows.

The most fundamental principle of MLOps is continuous improvement, reflecting
the iterative nature of ML projects. In the experimentation phase, the model is
developed using a training dataset, that generally differs from the target data in some
respect. When a model is deployed in production, the new data that the model needs
to perform prediction on can reveal insights about the model’s performance and
potential shortcomings. These insights necessitate a return to the experimentation
phase, where data scientists adjust or redesign their models to address any discovered
issues or to improve accuracy. This principle thus emphasizes the importance of
building a feedback loop that enables ongoing enhancements throughout the lifecycle
of a model. Automation, particularly through the use of CI/CD pipelines, plays a
crucial role in this process by making the transition between experimentation and
production phases more continuous. Monitoring is also an essential part of this
process: a model deployed in production needs to be continuously assessed so as to
detect major drifts that may reduce the predictive performance of the model and thus
necessitate further adjustments, such as re-training or fine-tuning the model.

Another major goal of MLOps is to promote reproducibility, ensuring that any
ML experiment can be reliably reproduced with the same results. MLOps tools
thus facilitate thorough logging of ML experiments, including data pre-processing
steps, model hyperparameters, and training algorithms. Data, models, and code
are versioned, enabling teams to revert to previous versions if an update does not
perform as expected. Finally, these tools help to produce detailed specifications of
the computing environment used to produce these experiments — such as versions
of libraries — and often rely on containers to help replicate the same conditions in
which the original model was developed.

Finally, MLOps aims at fostering collaborative work. ML-based projects generally
involve a wider range of profiles: business units and data science teams on the
one hand, developers and operations teams on the other. Like DevOps, MLOps
thus emphasizes the need for a collaborative culture and to avoid working in silos.
MLOps tools generally include collaborative features, such as centralized stores for
ML models or ML features which facilitate the sharing of components between team
members and limit redundancy.

4.2.3 Implementation with MLflow

Numerous tools have been developed to implement the MLOps approach in actual
projects. All of these frameworks aim at enforcing, in some form, the core principles
described above. In this project, we chose to rely on a popular open-source frame-
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work named MLflow18. This choice does not indicate any inherent superiority of
MLflow over alternative software, but reflects a set of good properties associated
with MLflow that made it a very relevant solution for our application. First, it covers
the entire lifecycle of ML projects, while other tools may be more specialized in
some parts of it. Second, it exhibits great interoperability as it is well-interfaced
with popular ML libraries — such as PyTorch, Scikit-learn, XGBoost, etc. — and
supports multiple programming languages — including Python, R, and Java, thus
covering the spectrum of programming languages commonly used at Insee. Finally,
it proved to be very user-friendly and thus encouraged adoption among the project
members and facilitated continuous collaboration between them.

MLflow provides a cohesive framework to operationalize MLOps principles ef-
fectively within ML projects. Data scientists can encapsulate their work in MLflow
Projects that package together ML code and its dependencies, ensuring that each
project is reproducible and can be consistently re-executed. A project relies on an
MLflow Model, a standard format that is compatible with most ML libraries and
offers a normalized way of serving the model, e.g. via an API. This interoperability
and standardization are instrumental in supporting continuous improvement of the
project, as models trained with a variety of packages can be readily compared or
switched by one another without breaking any code. As experiments with various
models progress, the Tracking Server logs detailed information about each run —
hyperparameters, metrics, and outputs artifacts and metrics — which there again
promotes reproducibility but also facilitates the model selection phase through a
user-friendly interface. After this experimentation phase, selected models are inte-
grated into the Model Registry, where they are versioned and staged for deployment.
This registry serves as a centralized model store that enables the different project
members or teams to collaboratively manage the lifecycle of the project. Figure 10
shows the core components of MLflow and how they facilitate a more continuous
and collaborative workflow inside an ML project.

Fig. 10 Core components of MLflow. Source: Databricks.

18 https://github.com/MLflow/MLflow
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4.3 Facilitating iterative development with cloud technologies

While continuous improvement is a fundamental principle of MLOps, it is also a very
demanding one. In particular, it requires designing and building our project as an
integrated pipeline whose various stages are mainly automated, from data ingestion
to monitoring the model in production. In this context, iterative development is
essential in order to build a minimum viable product that is then refined and improved
over time. This section shows how cloud-native technologies, through the Onyxia
project, were instrumental in building the project from the start as a collection of
modular connected components, thus greatly enhancing the capacity for continuous
refinement over time.

4.3.1 A flexible development environment

In a ML project, the flexibility of the development environment is essential. First, due
to the diversity of tasks to be performed — data collection, preprocessing, modeling,
evaluation, inference, monitoring, etc. Second, because ML is a fast-evolving field,
it is preferable to build an ML app as a collection of modular components so as to
be able to update components without disrupting the entire pipeline. As discussed in
section 2.2, cloud-native technologies enable the creation of modular and scalable
development environments.

However, as also discussed in section 3, access to such resources is not enough.
An ML project requires a wide variety of tools to comply with MLOps principles —
data storage, interactive development environments to experiment freely, automation
tools, monitoring tools, etc. While these tools can be installed on a Kubernetes
cluster, making them available to data scientists in an integrated and pre-configured
manner is essential to facilitate their adoption. Through its catalog of services and the
automatic injection of configuration in the services, Onyxia enables building projects
that rely on multiple cloud-native components that can communicate readily with
each other.

The way model training was carried out for this project emphasizes the flexibility
provided by Onyxia in the experimentation phase. All the code performing the
training is written in Python in the context of a VSCode service. As personal S3
credentials are injected in each service at startup, the various users of the projects
can interact directly with the training data stored on a S3 bucket on MinIO, Onyxia’s
default object storage solution. All experiments performed for the model selection
phase are logged on a shared instance of MLflow, which stores logged data on
a PostgreSQL instance automatically launched on Kubernetes and artifacts (trained
models and associated metadata) on MinIO. The model was trained using grid-search
for hyperparameter tuning and evaluated through cross-validation, a combination
that is known to provide a better evaluation of the generalization performance of
the model but also requires a lot of computing resources, due to the combinatory
nature of testing many hyperparameters combinations. In our case, we leveraged
Argo Workflows, an open-source workflow engine designed to orchestrate parallel



A cloud-native data science platform to build production-grade ML systems 25

jobs on Kubernetes, each job being specified as an independent container. It then
becomes straightforward to compare performances of the different trained models
and select the best one using the comparison and visualization tools available in the
UI of MLflow.

In summary, the training stage was made efficient and reproducible thanks to
the use of numerous modularly connected components — a distinctive feature of
cloud-native technologies — readily made available to data scientists by Onyxia.

4.3.2 Deploying a model

Once candidate models have been optimized, evaluated and a best-performing model
has been selected, the next step is to make it available to the application end users.
Simply providing the trained model as an artifact or even just the code to train the
model is not a convenient way to serve it, as it assumes that users have the resources,
infrastructure, and knowledge required for training it under the same conditions. The
goal is therefore to make the model available in a simple and interoperable manner, in
the sense that it should be possible to query it with various programming languages.
Furthermore, it should be possible for other applications to query the model in a
programmatic way.

Against that background, we opted to serve the model through a REST API. This
technology has become a standard way to serve ML models as they offer several
benefits. First, they fit very well a cloud-oriented environment: similarly to the other
components of our stack, it makes it possible to query the model using standard HTTP
requests, which contributes to the modularity of the system. It also means that they
are interoperable: as they rely on standards technologies for queries (HTTP requests)
and responses (generally, a JSON-formatted string), they are mostly agnostic to the
programming language used to request them. Finally, they offer great scalability
because of their stateless design19. As each request must contain all the information
needed to understand and process the request, REST APIs can easily be duplicated
on different machines to balance a challenging load — a process known as horizontal
scaling.

We developed the API serving the model with FastAPI20, a fast and well-
documented web framework for building APIs with Python. The API code and
required software dependencies are encapsulated into a Docker image so that it can
be deployed as a container on the Kubernetes cluster. An important benefit of us-
ing Kubernetes is the ability to scale the API — through the number of API pods
effectively deployed — to the demand and provide automatic load-balancing. Upon
startup, the API automatically retrieves the correct model from the MLflow model

19 Stateless design refers to a system architecture where each request from a client to the server
must contain all the information needed to understand and process the request. This means that
the server does not store any information about the client’s state between requests, allowing each
request to be handled independently. This design simplifies scaling and enhances the robustness of
the system, as any server can handle any request without relying on prior interactions.
20 https://fastapi.tiangolo.com
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registry, which acts as a proxy from the actual artifact of the production model, stored
on MinIO. Finally, as the application code is packaged using MLFlow’s standardized
API — enabling for instance to integrate the pre-processing step directly to each API
call — the inference code can remain mostly uniform regardless of the underlying
ML framework used. This deployment process is summarized in Figure 11.

Fig. 11 A cloud-native approach to serve a ML Model using a REST API

4.3.3 Building an integrated pipeline

The architecture we built at this stage already reflects some important principles of
MLOps. The use of containerization to deploy the API as well as the use of MLflow
to track the experiments while developing the model ensures reproducibility of the
predictions. Using the central model registry provided by MLflow facilitates the
management of the lifecycle of the models in a collaborative way. Furthermore,
the modularity of our architecture leaves room for further improvement as modular
components can be easily added or modified without breaking the structure of the
application as a whole. As we shall see in subsequent sections, this property was
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essential in building the application iteratively, enabling to add a monitoring layer
(Section 4.3.4) and an annotation component (Section 4.3.5) to promote continuous
improvement of the model.

However, the ability to refine the base architecture iteratively also requires more
continuity in the process. At this stage, the deployment process involves several
manual operations. For instance, adding a new feature to the API would require to
build a new image, tag it, update the Kubernetes manifests used to deploy the API
and enforce them on the cluster to replace the existing one with minimum downtime.
Similarly, a change of the model served through the API would require a very simple
modification of the code but several manual steps to update the version on the cluster.
As a result, data scientists are not fully autonomous when it comes to prototyping
and testing updated versions of the model or the API, which limit the potential for
continuous improvement.

In order to automate this process, we built a CI/CD pipeline — a concept already
presented in Section 4.2.1 — integrating these various steps. Figure 12 illustrates
our specific implementation of a CI/CD pipeline. Any change in the code of the
API repository triggers a CI build process (implemented with GitHub Actions) of
the associated docker image, which is then released on a public container registry
(DockerHub). This image can then be fetched and deployed by the container orches-
trator (Kubernetes), by specifying and applying manually new manifests to update
the Kubernetes resources of the API. However, the downside of this approach is that
it limits reproducibility of the deployment, since each resource is handled indepen-
dently by the orchestrator, so that the lifecycle of the API deployment as a whole is
not managed. To overcome this shortcoming, we integrate the deployment part in a
CD pipeline based on the GitOps approach: the resources manifest of the API are
stored on a Git repository. The state of this "GitOps" repository is monitored by a
Kubernetes operator (ArgoCD), so that any change in the application manifests is
directly propagated to the deployment on the cluster. In this integrated pipeline, the
only action needed for the data scientist to trigger an update of the API is to change
the tag of the API image indicating the version to be deployed.

Fig. 12 The CI/CD pipeline implemented in the project
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4.3.4 Monitoring a model in production

Once the initial development phase of the project has been completed — includ-
ing training, optimization, and deployment of the model to be served to users —
it is crucial to understand that the data scientist’s responsibilities extend further.
Traditionally, the role of the data scientist is often limited to training the model
and selecting the model to deploy, with the deployment task being delegated to the
IT department. However, a specificity of ML projects is that, once in production,
the model has not yet reached the end of its lifecycle, and it must be continuously
monitored to prevent undesirable performance degradation. Continuous monitoring
of the deployed model is extremely important to ensure the conformity of results to
expectations, anticipate changes in data, and iteratively improve the model.

The concept of monitoring can take on different meanings depending on the con-
text of the involved team. For IT teams, it primarily involves verifying the technical
effectiveness of the application, including aspects such as latency, memory con-
sumption, or disk usage. Conversely, for data scientists or business teams, the focus
is more on methodological monitoring of the model. However, real-time tracking of
the performance of an ML model is often a complex task, given that ground truth is
usually not known at the time of prediction. Therefore, it is common to use proxies
to detect any signs of performance degradation. Two main types of degradation of
an ML model are generally distinguished. The first one is data drifts, which occur
when the data used during inference in production exhibits significant differences
compared to the data used during training. The second one is concept drifts, which
occur when a change in the statistical relationship between the features and the target
variable is observed over time.

In the context of our project, the objective is to achieve the highest rate of correctly
classified textual description while minimizing the number of textual description
requiring manual intervention. Thus, our goal is to distinguish correct predictions
from incorrect ones without prior access to ground truth. To accomplish this, we
use a confidence index defined as the difference between the two highest confidence
scores of the top results returned by the model. For a given textual description,
if the confidence index exceeds a determined threshold, the textual description is
automatically coded. Otherwise, the textual description is manually coded by an
Insee agent. This manual coding task is still informed by the ML model: through an
application that queries the API, the agent is shown the five most probable codes
according to the model.

Defining the threshold for automatic coding of textual descriptions was thus
crucial in this process, and involved making a trade-off between achieving a high au-
tomatic coding rate and maximizing coding performance. To monitor the behaviour
of our model in production, we developed an interactive dashboard that enables visu-
alization of several metrics of interest for the business teams. Among these metrics
are the number of requests per day and the rate of automatic coding per day based
on a given confidence index threshold. This visualization allows business teams to
understand the rate of automatic coding they would have obtained if they had cho-
sen different thresholds. This dashboard also represents the distribution of obtained
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confidence indices and compare temporal windows in order to check for changes in
the distributions of predictions returned by the model21. Finally, confidence indices
can be analysed at finer levels of granularity based on the aggregation level of the
statistical classification, to determine which classes are most difficult to predict and
which have more or less occurrences.

Figure 13 shows the components that were added to the project architecture so as to
provide the monitoring dashboard described above. First, we set up a simple Extract-
Transform-Load (ETL) process in Python (second box of the bottom row), which
fetches the API logs periodically and transforms them into partitioned Parquet files22.
Then, we use the Quarto framework23 to build an interactive dashboard (third box
of the bottom row). To compute the various metrics presented in the dashboard, the
Parquet files are queried using the SQL language through the DuckDB engine. Like
the API, the dashboard is built and deployed as a container on the Kubernetes cluster,
and this process is automated using a CI/CD pipeline. The annotation component
(fourth box of the bottom row) is discussed in the next section.

4.3.5 Promoting continuous improvement of the model

The monitoring layer of our application provides an important and detailed view into
the system performance. Due to the dynamic nature of real-life data, ML models’
performance often declines over time. To promote continuous improvement of the
model, it is thus essential to envision strategies to overcome these performance
losses. A frequently used strategy is periodic re-training of the model, requiring the
collection of new training data.

Several months after the first version of the model was deployed in production, the
need to implement a continuous annotation process became increasingly apparent
for two key reasons. First, a gold-standard sample was not accessible at the time
of the experimentation phase, so we relied on a subset of the training dataset to
perform evaluation, knowing the labeling quality was not optimal. Continuously
collecting a gold-standard sample would thus enable us to get an unbiased view of
the model’s performance in production on real data, particularly on data that has
been automatically coded. Another reason is the redesign of the NACE statistical
classification in 2025. From 2025 onwards, NSOs will be required to use the latest

21 Such distribution changes are typically checked by computing statistical distances — such as
the Bhattacharyya distance, the Kullback-Leibler divergence, the Hellinger distance — and/or by
performing statistical tests — such as the Kolmogorov–Smirnov or the chi-squared test.
22 Ideally, existing frameworks should be preferred over custom-made solutions to prioritize stan-
dardized routines. At the time of building this component of the pipeline, we found that existing,
cloud-native frameworks for log analytics had important limitations. This constitutes an area of
improvement for the project.
23 Successor to R Markdown, Quarto has become an essential tool of our data stack. It unifies the
functionality of several very useful packages from the R Markdown ecosystem while providing
native support of several programming languages, including Python and Julia in addition to R. It is
increasingly used at Insee as a way to produce reproducible documents and output them in a variety
of formats.
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Fig. 13 Our implementation of a complete MLOps architecture

version of NACE, namely NACE Rev. 2.1. This revision brings substantial changes
that will require an adaptation of the model, and thus the collection of new training set.
Annotation of the old training dataset according to the new statistical classification
will be necessary.

Against that background, an annotation campaign has been initiated in early
2024 to continuously build a gold-standard dataset. The annotation campaign is
carried out on the SSP Cloud using Label Studio, an open-source annotation tool
that provides a user-friendly interface and is available in Onyxia’s catalog. Figure
13 illustrates how the labelling component (fourth box of the bottom row) could
be readily integrated in the project architecture thanks to its modular nature. In
practice, we create a pool of text descriptions randomly sampled from the data
passed through the API over the past three months. This sample is then sent to
annotation by NACE experts using the UI of Label Studio. The annotation results
are automatically saved on MinIO, transformed into Parquet format. Then, these
gold-standard data are directly integrated into the monitoring dashboard to compute
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and observe various model performance metrics. These metrics give us a much
clearer picture on the actual performance of the model on production data, and in
particular on its shortcomings. In parallel, we will launch an annotation campaign
in the upcoming months to construct a new training set tailored to the recently
updated NACE statistical classification. Leveraging both the updated training data
and performance metrics derived from the gold-standard sample, we aim to iteratively
enhance the model’s accuracy through periodical and targeted re-training in the near
future.

5 Discussion

The development of data science methods offers considerable potential for official
statistics. However, our ability to create value from these new methods essentially
depends on our capacity to produce production-grade systems that serve their purpose
in a robust way. This evolution calls for deep reflection on what constitutes a modern,
scalable data science infrastructure for official statistics. This article presents the
Onyxia project, the proposal for such a platform that we are developing at Insee.
By exploiting cloud-native technologies that have become standards in the data
eco-system, it aims to increase statisticians’ autonomy in the orchestration of their
statistical treatments, while promoting reproducibility of produced statistics. As
cloud technologies are notoriously difficult to configure, the core value of Onyxia’s
lies in making them accessible to statisticians via a user-friendly interface and a
catalog of pre-configured services to cover most common uses. Through an internal
project aiming at revising the NACE classification process using machine learning
methods, we illustrate how Onyxia enables to iteratively build production-grade
machine learning projects that promote continuous improvement, a fundamental
principle of the MLOps approach.

Initially developed as an internal project, Onyxia has gained recognition beyond
the scope of Insee or the French administration. Convinced of the potential of cloud
technologies to foster autonomy and leverage the full potential of data science, several
organizations now have a production instance of Onyxia running, and multiple others
are in the process of either testing or implementing one. Besides, the choice of Onyxia
as the reference data science platform in the context of the AIML4OS project should
further facilitate its adoption within the ESS. This trend is naturally very beneficial to
the Onyxia project, as it moves from a project developed in open-source — but mainly
at Insee — to a full open-source project with a growing base of contributors. This in
turn facilitates its adoption by other organizations, since it gives more guarantees on
its sustainability independently of Insee’s strategy. The governance of the project is
currently evolving to reflect this trend. For instance with the organization of monthly
community calls and the creation of a public channel and roadmap for the project24.

24 All information are available on the GitHub depository of the project:
https://github.com/InseeFrLab/onyxia
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Despite this success, we observe several limitations to the widespread adoption
of the project in organizations. First, it is essential to remind that the fundamental
choice made by organizations that adopt Onyxia is not the software itself, but the
underlying technologies: containerization (through Kubernetes) and object storage.
These technologies can represent substantial entry costs for organizations, as they
demand a significant commitment to developing and maintaining skills which are
not readily found in NSOs. Yet, the general trend towards cloud-native solutions
among data-centric organizations suggests a favourable shift that could mitigate
these challenges over time.

Similarly, the transition towards cloud-native technologies induces entry costs for
statisticians. First, they often deal with a loss of references regarding where compu-
tations actually happen: while they may be accustomed to performing computation
on centralized servers rather than a personal computer, the container adds a layer
of abstraction that make the location hard to grasp at first. But the major perceived
change in this paradigm is the loss of data persistence. In traditional setups — either
a personal computer or a server accessed through a virtual desktop — the code,
the data and the computing environment are kind of mixed in a black box fashion.
On the contrary, containers have no persistence by design. While object storage
provides this persistence, a proper use of these infrastructures for statistical projects
require a variety of tools and corresponding skills: using a version control system
for the code, interacting with the object storage API to store the data, providing
configuration files or secrets as inputs, etc. In a way, these entry costs can be seen as
the "price" of autonomy: thanks to cloud-native technologies, statisticians now have
access to scalable and flexible environments that enable them to experiment more
freely, but this autonomy requires a significant skills upgrade which may be over-
whelming at first and limit adoption. However, our experience at Insee suggests that
this effect can largely be mitigated through a combination of training statisticians to
development best practices and accompanying statistical projects when transitioning
to cloud infrastructures.

While Onyxia has significantly democratized access to cloud-native technologies
for statisticians, the actual integration of data science methods in the statistical pro-
duction of NSOs encompasses broader challenges, organizational in nature. A major
hindsight from the deployment of our first ML model in production is the necessity to
overcome skill compartmentalization across IT, business, and innovation teams. By
nature, production-grade ML projects involve a wide range of skills — knowledge of
the business domain, model training and fine-tuning, deployment and monitoring —
and thus effective collaboration between professionals with different work cultures,
programming languages, etc. Our experience shows that cloud technologies, by fos-
tering autonomy of data scientists, give more continuity to ML projects and facilitate
this much needed collaboration between various profiles. However, fully address-
ing these challenges involve measures that go beyond the technical domain. For
instance, embedding some data science capabilities directly within business teams,
in complement of centralized innovation teams, could foster better alignment with
project objectives. Also, recruiting profiles that are not typically present in NSOs,
such as data engineers or ML engineers, could bring new essential skills that lie at



A cloud-native data science platform to build production-grade ML systems 33

the intersection of statistical methodology and computer techniques. Ultimately, the
transition towards a data science-driven approach in statistical production should rely
on a balanced strategy that couples technical solutions such as Onyxia with compre-
hensive organizational adjustments, fostering a culture of collaboration, continuous
learning, and innovation.
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